首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   88篇
  2022年   5篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   19篇
  2015年   23篇
  2014年   52篇
  2013年   57篇
  2012年   62篇
  2011年   77篇
  2010年   37篇
  2009年   40篇
  2008年   78篇
  2007年   84篇
  2006年   84篇
  2005年   68篇
  2004年   84篇
  2003年   60篇
  2002年   67篇
  2001年   49篇
  2000年   41篇
  1999年   50篇
  1998年   22篇
  1997年   19篇
  1996年   16篇
  1995年   23篇
  1994年   18篇
  1993年   9篇
  1992年   28篇
  1991年   26篇
  1990年   11篇
  1989年   19篇
  1988年   14篇
  1987年   15篇
  1986年   12篇
  1985年   21篇
  1984年   15篇
  1983年   10篇
  1981年   5篇
  1979年   7篇
  1978年   4篇
  1976年   4篇
  1974年   4篇
  1970年   4篇
  1969年   3篇
  1941年   4篇
  1935年   3篇
  1933年   4篇
排序方式: 共有1436条查询结果,搜索用时 15 毫秒
991.
A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras.  相似文献   
992.
It is well characterized that melanophores in the tail fin of Xenopus laevis tadpoles are directly photosensitive. In order to better understand the mechanism underlying this direct photosensitivity, we performed a retinal analysis of the tail fins and eyes of Xenopus tadpoles at stages 51-56 using high performance liquid chromatography (HPLC). Following the extraction of retinoids by the formaldehyde method, a fraction containing retinal and/or 3,4-didehydroretinal isomers from the first HPLC analysis were collected. These isomers were then reduced by sodium borohydride to convert retinal and/or 3,4-didehydroretinal isomers into the corresponding retinol isomers to prepare for a second HPLC analysis. Peaks of 11-cis and all-trans 3,4-didehydroretinol were detected in the eyes and tail fins containing melanophores, but they were not detected in the tail fins without melanophores. The amounts of 11-cis and all-trans 3,4-didehydroretinol were 27.5 and 5.7 fmol/fin, respectively, and the total quantity of 3,4-didehydroretinal was calculated at approximately 5 x 10(6) molecules/melanophore. These results strongly suggest the presence of 11-cis and all-trans 3,4-didehydroretinal in melanophores of the tadpole tail fin, which probably function as the chromophore of photoreceptive molecules.  相似文献   
993.
994.
A mutant allele of SGS1 of Saccharomyces cerevisiae was identified as a suppressor of the slow-growth phenotype of top3 mutants. We previously reported the involvement of Top3 via the interaction with the N-terminal region of Sgs1 in the complementation of methylmethanesulfonate (MMS) sensitivity and the suppression of hyper recombination of a sgs1 mutant. In this study, we found that several amino acids residues in the N-terminal region of Sgs1 between residues 4 and 33 were responsible for binding to Top3 and essential for complementing the sensitivity to MMS of sgsl cells. Two-hybrid assays suggested that the region of Top3 responsible for the binding to Sgs1 was bipartite, with portion in the N- and C-terminal domains. Although disruption of the SGS1 gene suppressed the semi-lethality of the top3 mutant of strain MR, the sgsl-top3 double mutant grew more slowly and was more sensitive to MMS than the sgsl single mutant, indicating that Top3 plays some role independently of Sgs1. The DNA topoisomerase activity of Top3 was required for the Top3 function to repair DNA damages induced by MMS, as shown by the fact that the TOP3 gene carrying a mutation (Phe for Tyr) at the amino acid residue essential for its activity (residue 356) failed to restore the MMS sensitivity of sgs1-top3 to the level of that of the sgs1 single mutant. Epistatic analysis using the sgs1-top3 double mutant, rad52 mutant and sgs1-top3-rad52 triple mutant indicated that TOP3 belongs to the RAD52 recombinational repair pathway.  相似文献   
995.
Arabidopsis ARR4/ATRR1/IBC7 and ARR8/ATRR3 are homologous genes of prokaryotic response regulators that are involved in the His-Asp phosphorelay signal transduction. We analyzed the function of these genes as response regulators using transgenic plants. Overexpression of ARR4 in cultured stems of the transgenics markedly promoted shoot formation in the presence of cytokinin, while overexpression of ARR8 repressed shoot formation and greening of calli. The expression level of cytokinin-inducible genes, cycD3 and cab increased in the ARR4 overexpressor but decreased in the ARR8 overexpressor. By contrast, two drought stress-inducible genes, rd29A and erd1, were expressed in both overexpressors as that in control plants. These results suggest that ARR4 and ARR8 are involved in cytokinin signal transduction, and that ARR4 functions as a positive-regulator, whereas ARR8 functions as a negative-regulator. Furthermore, microarray analysis showed that several genes were up-regulated in the ARR4 overexpressor. Consistent with these results, ARR4 and ARR8 might play important roles in the sensoring system of cytokinin signal transduction pathway in various developmental and environmental conditions and the regulation of gene expression.  相似文献   
996.
The eukaryotic translation initiation factor 4G (eIF4G) plays a pivotal role in translation. EIF4G interacts with several other factors including eIF4E, which is a cap-binding protein, and the poly(A)-binding protein (PABP). In this work, we demonstrate that the expression of the amino-terminal one-third of eIF4G, which interacts with eIF4E and PABP, in Xenopus oocyte inhibits translation and progesterone-induced maturation.  相似文献   
997.
To examine the influence on aromatase and sulfatase pathways in estrogen pool by drugs reported to cause gynecomastia as the side effect, 29 ethical drugs were incubated with human placental microsomes as an enzyme source. The percent inhibition of drugs on aromatase pathway was obtained by sum of the velocity constants of two products, estrone (E1) and estradiol (E2) from testosterone (T) as the substrate, and that on sulfatase pathway was obtained as the velocity constant of production of E1 from estrone sulfate (E1S). Although several drugs including ketoconazole showed a significant inhibition effect on aromatase pathway at their non-clinical over-dose concentration (100 microM), no influence on the inhibition was observed in any drugs at their approximately therapeutic concentration (1 microM). However, several drugs including spironolactone gave the product ratio (E2/E1) having higher value than that of the control, the result means spironolactone inhibits the conversion of E2 to E1. No inhibitory effect of the drugs tested on estrogen production from E1S (sulfatase pathway) was confirmed. The results suggest the possibility that the tested drugs known to cause gynecomastia have no inhibitory effect essentially on aromatase and sulfatase pathways.  相似文献   
998.
Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.  相似文献   
999.
1000.
Based on the 4-hydroxy-1-azabicyclo[3.1.0]hexane structure of azinomycin, a 3,4-epoxypiperidine structure was designed as a novel and simple alkylating molecular unit, and some 3,4-epoxypiperidine derivatives were found to show DNA-cleavage activity, the structural requirements for which were revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号